Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
Infect Dis Now ; 2022 Oct 30.
Article in English | MEDLINE | ID: covidwho-2283854

ABSTRACT

OBJECTIVES: We aimed to characterize and compare the viral loads (VL) of the Omicron BA.1 and BA.2 lineages and the Delta variant in nasopharyngeal samples from newly diagnosed COVID-19 patients and their kinetics over time. PATIENTS AND METHODS: The kinetics of the VL were measured on the CT data from 215 SARS-CoV-2 positive patients who presented at least two positive PCRs a day apart and were screened for SARS-CoV-2 viral lineages. RESULTS: We observed no significant difference in median CT value during the first diagnostic test between the Delta variant and the two Omicron lineages. However, the kinetics of CT decreases for the BA.1 and BA.2 lineage were significantly lengthier in time than the kinetics for the Delta variant. The BA.2 lineage presented lower median CT value (-2 CT) (inversely proportional to the VL) than the BA.1 lineage. CONCLUSIONS: BA.2 Omicron lineage presented higher VL than BA.1 Omicron lineage at diagnostic. Omicron BA.1 and BA.2 lineages have more prolonged replication than the Delta variant.

4.
Clin Microbiol Infect ; 28(7): 1027.e1-1027.e4, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1748116

ABSTRACT

OBJECTIVE: We aimed to characterize the evolution of humoral immune response up to 1 year after SARS-CoV-2 infection in healthcare workers (HCWs) during the first wave of COVID-19 in Paris. METHODS: Serum samples from 92 HCWs were tested at month 0 (M0), M6, and M12 after SARS-CoV-2 infection for IgG targeting the nucleocapsid (N), IgG targeting the receptor-binding domain (RBD) of spike (S) protein, IgA targeting S, and anti-RBD neutralizing antibodies. After M6, 46 HCWs received a single dose of COVID-19 vaccine. RESULTS: We observed a significant decrease in all SARS-CoV-2 immunologic markers at M6 post-infection: median decreases were 0.26 log binding antibody units/mL (M0: 1.9 (interquartile range (IQR) 1.47-2.27); M6: 1.64 (IQR 1.22-1.92)) for anti-RBD IgG; 4.10 (index) (M0: 4.94 (IQR 2.72-6.82); M6: 0.84 (IQR 0.25-1.55)) for anti-N IgG; 0.64 (index) (M0: 2.50 (IQR 1.18-4.62); M6: 1.86 (IQR 0.85-3.54)) for anti-S IgA; and 24.4% (M0: 66.4 (IQR 39.7-82.5); M6: 42.0 (IQR 16.8-68.8)) inhibition activity for the RBD neutralizing antibodies. Between M6 and M12, anti-RBD IgG level, anti-S IgA index, and anti-RBD neutralizing activity significantly increased among COVID-19 vaccinated HCWs, whereas they remained stable among unvaccinated HCWs. Anti-N IgG index significantly decreased between M6 and M12 among both vaccinated (median: 0.73 (IQR 0.23-1.11) at M6 and 0.52 (IQR 0.20-0.73) at M12) and unvaccinated HCWs (median: 0.79 (IQR 0.21-4.67) at M6 and 0.34 (IQR 0.24-2.78) at M12). DISCUSSION: A steady decline in the anti-N IgG response was observed during the first year after SARS-CoV-2 infection among HCWs, whereas the anti-RBD IgG and the anti-S IgA responses remained stable and could be enhanced by COVID-19 vaccination.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Humoral , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2
5.
Clin Infect Dis ; 74(4): 707-710, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1703814

ABSTRACT

There are concerns about neutralizing antibodies' (NAbs') potency against severe acute respiratory syndrome coronavirus 2 variants. Despite decreased NAb titers elicited by BNT162b2 vaccine against VOC202012/01 and 501Y.V2 strains, 28/29 healthcare workers (HCWs) had an NAb titer ≥1:10. In contrast, 6 months after coronavirus disease 2019 mild forms, only 9/15 (60%) of HCWs displayed detectable NAbs against 501Y.V2 strain.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Health Personnel , Humans , SARS-CoV-2/genetics , United Kingdom/epidemiology
7.
J Neurol Neurosurg Psychiatry ; 93(1): 24-31, 2022 01.
Article in English | MEDLINE | ID: covidwho-1338876

ABSTRACT

BACKGROUND: SARS-CoV-2 seroconversion rate after COVID-19 may be influenced by disease-modifying therapies (DMTs) in patients with multiple sclerosis (MS) or neuromyelitis optica spectrum disorders (NMO-SD). OBJECTIVE: To investigate the seroprevalence and the quantity of SARS-CoV-2 antibodies in a cohort of patients with MS or NMO-SD. METHODS: Blood samples were collected in patients diagnosed with COVID-19 between 19 February 2020 and 26 February 2021. SARS-CoV-2 antibody positivity rates and Ig levels (anti-S IgG titre, anti-S IgA index, anti-N IgG index) were compared between DMTs groups. Multivariate logistic and linear regression models were used to estimate the influence of DMTs and other confounding variables on SARS-CoV-2 serological outcomes. RESULTS: 119 patients (115 MS, 4 NMO, mean age: 43.0 years) were analysed. Overall, seroconversion rate was 80.6% within 5.0 (SD 3.4) months after infection. 20/21 (95.2%) patients without DMT and 66/77 (85.7%) patients on DMTs other than anti-CD20 had at least one SARS-CoV-2 Ig positivity, while this rate decreased to only 10/21 (47.6%) for patients on anti-CD20 (p<0.001). Being on anti-CD20 was associated with a decreased odd of positive serology (OR, 0.07 (95% CI 0.01 to 0.69), p=0.02) independently from time to COVID-19, total IgG level, age, sex and COVID-19 severity. Time between last anti-CD20 infusion and COVID-19 was longer (mean (SD), 3.7 (2.0) months) in seropositive patients compared with seronegative patients (mean (SD), 1.9 (1.5) months, p=0.04). CONCLUSIONS: SARS-CoV-2 antibody response was decreased in patients with MS or NMO-SD treated with anti-CD20 therapies. Monitoring long-term risk of reinfection and specific vaccination strategies in this population may be warranted. TRIAL REGISTRATION NUMBER: NCT04568707.


Subject(s)
COVID-19/immunology , Immunity, Humoral , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , Neuromyelitis Optica/drug therapy , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Female , Humans , Male , Middle Aged , Paris , Seroepidemiologic Studies
10.
J Neurol ; 268(9): 3072-3080, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1002093

ABSTRACT

BACKGROUND: Cancer patients may be at higher risk for severe coronavirus infectious disease-19 (COVID-19); however, the outcome of Primary Central Nervous System Lymphoma (PCNSL) patients with SARS-CoV-2 infection has not been described yet. METHODS: We conducted a retrospective study within the Lymphomes Oculo-Cérébraux national network (LOC) to assess the clinical characteristics and outcome of SARS-CoV-2 infection in PCNSL patients (positive real-time polymerase chain reaction of nasopharyngeal swab or evocative lung computed tomography scan). We compared clinical characteristics between patients with severe (death and/or intensive care unit admission) and mild disease. RESULTS: Between March and May 2020, 13 PCNSL patients were diagnosed with SARS-CoV-2 infection, 11 (85%) of whom were undergoing chemotherapy at the time of infection. The mortality rate was 23% (3/13), and two additional patients (15%) required mechanical ventilation. Two patients (15%) had no COVID-19 symptoms. History of diabetes mellitus was more common in severe patients (3/5 vs 0/8, p = 0.03). Two patients recovered from COVID-19 after mechanical ventilation during more than two weeks and resumed chemotherapy. In all, chemotherapy was resumed after COVID-19 recovery in nine patients (69%) after a median delay of 16 days (range 3-32), none of whom developed unusual chemotherapy complication nor SARS-Cov2 reactivation. CONCLUSION: This preliminary analysis suggests that, while being at higher risk be for severe illness, PCNSL patients with COVID-19 might be treated maximally especially if they achieved oncological response at the time of SARS-CoV-2 infection. Chemotherapy might be resumed without prolonged delay in PCNSL patients with COVID-19.


Subject(s)
COVID-19 , Lymphoma , Central Nervous System , Humans , Lymphoma/complications , Lymphoma/epidemiology , Lymphoma/therapy , RNA, Viral , Retrospective Studies , SARS-CoV-2
12.
J Clin Virol ; 130: 104573, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-701949

ABSTRACT

BACKGROUND: RT-PCR testing is crucial in the diagnostic of SARS-CoV-2 infection. The use of reliable and comparable PCR assays is a cornerstone to allow use of different PCR assays depending on the local equipment. In this work, we provide a comparison of the Cobas® (Roche) and the RealStar® assay (Altona). METHODS: Assessment of the two assays was performed prospectively in three reference Parisians hospitals, using 170 clinical samples. They were tested with the Cobas® assay, selected to obtain a distribution of cycle threshold (Ct) as large as possible, and tested with the RealStar assay with three largely available extraction platforms: QIAsymphony (Qiagen), MagNAPure (Roche) and NucliSENS-easyMag (BioMérieux). RESULTS: Overall, the agreement (positive for at least one gene) was 76 %. This rate differed considerably depending on the Cobas Ct values for gene E: below 35 (n = 91), the concordance was 99 %. Regarding the positive Ct values, linear regression analysis showed a coefficient of determination (R2) of 0.88 and the Deming regression line revealed a strong correlation with a slope of 1.023 and an intercept of -3.9. Bland-Altman analysis showed that the mean difference (Cobas® minus RealStar®) was + 3.3 Ct, with a SD of + 2.3 Ct. CONCLUSIONS: In this comparison, both RealStar® and Cobas® assays provided comparable qualitative results and a high correlation when both tests were positive. Discrepancies exist after 35 Ct and varied depending on the extraction system used for the RealStar® assay, probably due to a low viral load close to the detection limit of both assays.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , Betacoronavirus , COVID-19 , COVID-19 Testing , Humans , Limit of Detection , Pandemics , Prospective Studies , Reagent Kits, Diagnostic , SARS-CoV-2 , Sensitivity and Specificity , Viral Load , Viral Proteins/genetics
13.
Clin Microbiol Infect ; 26(11): 1560.e1-1560.e4, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-670663

ABSTRACT

OBJECTIVES: Studies are needed to better understand the genomic evolution of the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aimed to describe genomic diversity of SARS-CoV-2 by next-generation sequencing (NGS) in a patient with longitudinal follow-up for SARS-CoV-2 infection. METHODS: Sequential samples collected between January 29th and February 4th, 2020, from a patient infected by SARS-CoV-2 were used to perform amplification of two genome fragments-including genes encoding spike, envelope, membrane and nucleocapsid proteins-and NGS was carried out with Illumina® technology. Phylogenetic analysis was performed with PhyML and viral variant identification with VarScan. RESULTS: Majority consensus sequences were identical in most of the samples (5/7) and differed in one synonymous mutation from the Wuhan reference sequence. We identified 233 variants; each sample harboured in median 38 different minority variants, and only four were shared by different samples. The frequency of mutation was similar between genes and correlated with the length of the gene (r = 0.93, p = 0.0002). Most of mutations were substitution variations (n = 217, 93.1%) and about 50% had moderate or high impact on gene expression. Viral variants also differed between lower and upper respiratory tract samples collected on the same day, suggesting independent sites of replication of SARS-CoV-2. CONCLUSIONS: We report for the first time minority viral populations representing up to 1% during the course of SARS-CoV-2 infection. Quasispecies were different from one day to the next, as well as between anatomical sites, suggesting that in vivo this new coronavirus appears as a complex and dynamic distributions of variants.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pneumonia, Viral/virology , Quasispecies/genetics , Betacoronavirus/classification , COVID-19 , Follow-Up Studies , Genome, Viral/genetics , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2 , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL